Category: Accelerators

Implementing a CPU+FPGA-based real-time video analytics pipeline

This post is a follow-up to “Implementing a CPU-based real-time video analytics pipeline,” where we discussed a CPU-based end-to-end video analytics pipeline. As seen in that post, a CPU-based pipeline runs into severe performance bottlenecks. Here we discuss how we address and overcome these bottlenecks using FPGAs as hardware accelerators. We explain Megh’s Video Analytics

Read More »

Megh’s platform strategy

The demand for real-time stream processing is increasing rapidly with the explosion of data from the Web, sensors, IoT and mobile devices, and other sources. Enterprises want to process this data as it moves to create business value in areas such as: Finance (e.g., fraud detection, risk management) Sales and marketing (e.g., customer preferences) Operations

Read More »

Megh’s flexible, high-performance deep learning engine

As deep learning (DL) becomes more pervasive, the need for efficient and fast computation is increasing. Traditional central processing units (CPUs) and graphical processing units (GPUs) are typically used for acceleration, despite the limiting nature of their fixed architectures. Field programmable gate arrays (FPGAs) have been highlighted for their flexibility, but until recently have fallen

Read More »